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Abstract

Recently, researchers propose to build deep learning based end-
to-end speaker verification (SV) systems and achieve com-
petitive results compared with the standard i-vector approach.
In addition to deep learning architectures, optimization metric
such as softmax loss or triplet loss, is important for extracting
speaker embeddings which are discriminative and generalizable
to unseen speakers. In this paper, angular softmax (A-softmax)
loss is introduced to improve speaker embedding quality. It
is investigated in two SV frameworks: a CNN based end-to-
end SV framework and an i-vector SV framework where deep
discriminant analysis is used for channel compensation. Ex-
perimental results on a short-duration text-independent speaker
verification dataset generated from SRE reveal that A-softmax
achieves significant performance improvement compared with
other metrics in both frameworks.

Index Terms: text-independent speaker verification, metric
learning, A-softmax

1. Introduction

Speaker recognition aims to recognize or verify one’s identity
through the given speech segment. It can be classified into text-
dependent and text-independent according to the lexicon con-
straint on the spoken content. Research interests in speaker
recognition include acoustic features, speaker modeling and
noise robustness, among which most researchers pay their at-
tention to speaker modeling.

Gaussian Mixture Model-Universal Background Model
(GMM-UBM) system dominated the speaker recognition field
for one decade since proposed in [1]. Inspired by Joint Fac-
tor Analysis in [2], i-vector[3] represents the state-of-the-art
speaker modeling framework. By modeling the speaker fac-
tors and channel factors in a single total variability subspace,
i-vector provides a low-dimensional embedding representation
of the speaker identity.

Deep neural networks (DNN) achieve incredible perfor-
mance in many tasks such as image recognition[4], machine
translation [5] and speech recognition[6, 7, 8], which also in-
spires researchers to apply this powerful tool to speaker recog-
nition. In previous works, DNN is usually utilized in two ways.
The first is similar to the speech recognition task[6], in which
DNN substitutes the GMM in the i-vector framework[9, 10]. In
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this framework, sufficient statistics are computed against a pre-
trained speech recognition DNN instead of the original GMM-
UBM. The second approach is to extract bottleneck features
[11, 12, 13, 14] or speaker representations [15, 16, 17] with
DNN, among which d-vector is the most typical one. By averag-
ing the frame-level extracted deep features, the utterance-level
representation d-vector is obtained. Some researchers follow
and extend this work by replacing the simple neural network
with complicated architectures such as Convolutional Neural
Network (CNN) and Time-Delay Neural Network (TDNN)[18],
or redesign the optimization metric and propose new embed-
dings such as j-vector [19]. Recently, instead of training the
DNN on the frame level, researchers in [20] add a temporal
pooling layer and train the model on the utterance level.

Standard speaker verification tasks are open-set problems,
which means speakers in the training set and the evaluation set
have no overlap. We expect the DNN to learn a discrimina-
tive speaker embedding space which is generalizable enough
to unseen speakers. Good speaker embeddings should have
small intra-speaker variations and large inter-speaker differ-
ences. More and more researchers are regarding the speaker
embedding learning as a metric learning problem. Metrics
including triplet loss[21, 22] and the generalized end-to-end
loss[23] are adopted. In these two frameworks, the training cri-
terion of the DNN is to reduce the variations of embeddings
from the same speaker and enlarge the distances between em-
beddings from different speakers. However, the performances
of these frameworks are sensitive to the sampling strategy. Ac-
cording to our experience with the triplet loss based systems,
careful design of the triplets plays a critical role in the train-
ing procedure. Tricks such as hard trial selection are adopted to
achieve better accuracy.

The angular softmax (A-softmax) was first proposed in face
recognition [24], which shares many properties with the speaker
recognition task. A-softmax loss modifies the softmax loss
function to learn angularly discriminative embeddings and adds
a controllable parameter m to pose constraints on the intra-
speaker variation of the learned embeddings. In this paper, we
investigate the application of A-softmax loss in two SV frame-
works. First, A-softmax loss is adopted in the same way as other
metrics such as softmax and triplet loss to directly learn speaker
embeddings from cepstral features. Second, A-softmax loss is
used to train a simple neural network as a compensation method
in the i-vector space, which is termed as deep discriminant anal-
ysis (DDA) in our previous work. A-softmax loss achieves sig-
nificant performance improvement in both frameworks.

The rest of this paper is organized as follows. Section 2 re-
views some works on deep speaker embeddings. Two detailed
types, softmax and triplet loss based speaker embeddings are
introduced. Section 3 introduces the A-softmax loss and its ap-
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plication for deep speaker embedding learning. Section 4 intro-
duces an intra-speaker variability compensation method named
DDA and how we incorporate A-softmax loss into this frame-
work. We discuss the experiments and analyze the results in
Section 5. Section 6 concludes this paper.

2. Deep Speaker Embeddings

One of the most common applications of DNN in speaker veri-
fication is to learn speaker representations (extract speaker em-
beddings). Researchers investigated different deep learning
architectures[18, 25] and optimization metrics[23, 25, 26] to
learn compact and discriminative speaker embeddings. In this
section, two frameworks to extract deep speaker embeddings
are introduced.

2.1. Softmax loss based speaker embeddings

Softmax loss is the most commonly used classification loss
function, which is formulated as
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where N is the number of samples, x; is the deep feature of
the i-th sample and y; is the corresponding label index. W is
the parameter of the last fully connected layer and b is the bias
term. The softmax loss based SV system is shown in Figure
1. The deep neural network takes the cepstral features as the
input. After several frame-level layers, a temporal pooling layer
aggregates the frame-level features from the same utterance to
a single utterance representation. Compared with the classical
d-vector[9], the DNN is trained on the utterance level. It should
be noted that our implementation also differs from the one in
[20, 27], because we didn’t take the covariance statistics into
consideration in the temporal pooling layer.
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Figure 1: Softmax loss based speaker verification

2.2. Triplet loss based speaker embeddings

Triplet loss explicitly reduces intra-class variations and enlarges
inter-class differences[21]. The architecture of triplet loss based
system is depicted in Figure 2[28]. In the training stage, we first
organize the samples into triplets. Each triplet consists of an
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anchor (an utterance from a specific speaker), a positive sample
(an utterance from the same speaker) and a negative sample (an
utterance from a different speaker). Similar to the architecture
in Section 2.1, the deep neural network also derives utterance-
level embeddings from frame-level features with a temporal
pooling layer. The triplet loss is calculated with the utterance
embeddings in the same triplet and back-propagation algorithm
is performed to update parameters.
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Figure 2: Triplet loss based speaker verification

3. Angular softmax (A-softmax) loss based
speaker embeddings

Although researchers have obtained promising results using the
deep neural networks supervised by aforementioned metrics,
some problems also exist. In the softmax loss based systems,
there is no explicit constraint on the intra-speaker variation. As
a result, the generalization ability of the model is doubtful. Al-
though triplet loss supervised speaker embeddings exhibit good
properties on discriminative ability and robustness[21, 28],
complex sample mining is required, which is time-consuming
and performance-sensitive. In this section, we introduce the an-
gular softmax (A-softmax) loss[24] and its application for deep
speaker embedding learning.

3.1. Angular softmax

The motivation of A-softmax loss comes from the observation
shown in Figure 3. The embeddings supervised by softmax loss
have great discrimination ability in the angular space (which is
also mentioned in the center loss related research [29]).

/

Decision
Boundary

Figure 3: Decision boundary learned by Softmax loss



If we further constrain that ||w;|| = 1 (this is accomplished
by normalizing the weight matrix every time it is updated) and
b; = 0, the softmax function becomes the modified softmax

loss,
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where 6 ; is the angle between w; and x;. This formula shows
the probability of a sample ¢ belonging to a class j is only de-
termined by the angle 6; ; between them. The training process
aims to reduce the angle between the sample and the corre-
sponding class and enlarge the angle with other classes.

Different from the softmax and modified softmax loss, the
A-softmax loss not only separates samples in the angular space,
but also enforces an angular margin between classes. Tradi-
tional softmax function classifies sample i into its correspond-
ing class y; if Vk # ys, Wy, Xi+by, > WiX;+by, and the mod-
ified softmax loss requires Yk 7 y;, cos(y, ;) > cos(0y,i). A-
softmax loss makes it more stringent to classify a sample into
the corresponding class. It requires Vk # y;, cos(mby, ;) >
cos(0x,;) where m is an integer and m > 2. By directly formu-
lating this idea into the modified softmax loss, we derive
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where 0, ; € [0, Z-]. This constraint can be removed by substi-
tuting the cosine function with a monotonic function ¢ (6, ;) =

(—1)* cos(mby, ;) — 2k, where 0,,; € [%,W] and
k € [0,m — 1]. m > 1 is an integer that controls the size
of angular margin. (When m = 1, A-softmax loss becomes
the modified softmax loss.) Therefore, the A-softmax loss is

formulated as
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The learned decision boundary is depicted in Figure 4. Com-
pared with softmax loss in Figure 3, A-softmax loss greatly en-
larges the angular margin of the deep features.

3.2. A-softmax loss based speaker embeddings

As introduced in Section 3.1, A-softmax enlarges the angular
margin between different classes and forces embeddings from
the same speaker to approach their corresponding w-vector.
This effect is quite similar to softmax loss combined with center
loss[29], despite the distance measurement differs. The archi-
tecture of A-softmax loss based speaker verification system is
similar to the one depicted in Figure 1, and the only difference
is the training criterion.

4. Deep Discriminant Analysis

Although i-vector is the state-of-the-art method for text-
independent speaker verification, it models the speaker factors
and channel factors in the same variability space. Channel com-
pensation methods such as Linear Discriminant Analysis (LDA)
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Figure 4: Decision boundary learned by A-softmax loss

and Probability Linear Discriminant Analysis (PLDA) are usu-
ally applied to the raw i-vectors. Through reducing the intra-
speaker variations and enlarging the inter-speaker differences,
LDA projects i-vectors onto a more discriminative space. We
proposed a neural network based compensation scheme (termed
as deep discriminant analysis, DDA) in [30], which shares the
same spirit with LDA. In [30], the DDA is trained with the joint
supervision of softmax loss and center loss. The center loss is
formulated as

1 2
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i

where c,, denotes the y;th class center of deep features. Exper-
iments reveal DDA’s superiority over traditional compensation
methods such as LDA and PLDA. In this paper, we extend our
previous work by adopting the A-softmax loss as the optimiza-
tion criterion.
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Figure 5: Deep discriminant analysis

As shown in Figure 5, the compensation neural network can
be trained against center loss or A-softmax loss. Given the raw
i-vector x, the compensated lower-dimension speaker embed-
ding y is represented as y = G(x), where G() denotes the
nonlinear transformation function learned by the NN with the
training data.

5. Experiments
5.1. Dataset

Following our previous works[28, 30], we evaluate the per-
formance of our methods on a short-duration text-independent
dataset generated from the NIST SRE corpus. This short dura-
tion text-independent task is more challenging for speaker veri-
fication. The training set consists of selected data from SRE04-
08, Switchboard II phase 2, 3 and Switchboard Cellular Part1,
Part2. The utterances are chopped into short segments rang-
ing from 3-5s after we remove silence frames with an energy-
based VAD. The training set contains 4000 speakers and each
speaker has 40 short utterances. The enrollment set and test
set are selected from NIST SRE 2010 following a similar pro-
cedure. The enrollment set contains 300 speaker models (150



males and 150 females) and each model is enrolled by 5 ut-
terances. The test set consists of 4500 utterances from the 300
models in the enrollment set. There are 392660 trials in the trial
list, with 15 positive samples and 1294 negative samples on av-
erage for each model. No cross-gender trial exists. The detailed
segmentation files and trial list will be released at https:
//github.com/wsstriving/DEL_Segments.git.

5.2. Implementation Details

Our baseline system is a standard i-vector system based on
Kaldi SRE10 V1 recipe[31]. 20-dimension MFCCs with a
frame-length of 25ms are extracted as front-end features, which
are then extended to 60 dimensions with delta and acceleration.
The UBM is a 2048 component full covariance GMM and the
dimension of extracted i-vectors is 400. PLDA serves as the
scoring back-end. The UBM, T-maxtrix and PLDA are trained
with the training set mentioned in Section 5.1.

The softmax loss, triplet loss and A-softmax loss based sys-
tems adopt the same neural network architecture in Figure 6. It
is a VGG-style CNN with 4 convolution layers, 2 max pool-
ing layers and 1 fully-connected layer to extract the frame-level
features. The frame-level features are averaged to utterance em-
beddings via a temporal pooling layer. The embedding dimen-
sion is set to 400 in all experiments.

The initial learning rate is set as 0.01 and is gradually re-
duced according to the validation accuracy. For triplet loss
based system, we adopt the same configuration and strategy in
our previous work[28]. For the A-softmax loss based system,
to make training easier and more stable, we initialize the pa-
rameters with pretrained softmax models. 36-dimension Fbank
features are extracted as front-end features for all the three sys-
tems and we extend 8 frames on each side to form the 17 x 36
time-frequency feature maps for each frame.
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Figure 6: VGG-style CNN architecture in our end-to-end system

5.3. Results and Analysis

The A-softmax loss based embeddings are evaluated on the
dataset described in Section 5.1 and compared with other
speaker embeddings. Cosine distance scoring (CDS) is used
as the back-end for neural embeddings. As shown in Table 1,
softmax loss based speaker embeddings slightly outperform the
i-vector/PLDA framework, which exhibits the effectiveness of
utterance-level training (Classical d-vector is also experimented
but cannot achieve comparable performance therefore not listed
here). Through careful triplets designing and the “hard trial se-
lection” trick, the Euclidean margin based triplet loss achieve
better performance than the softmax loss. The best result is ob-
tained from A-softmax loss, which outperforms i-vector/PLDA
and traditional softmax by 24.4% and 19.4%, respectively.

5.3.1. Impact of the hyper-parameter

Intuitively, the hyper-parameter m controls the size of the angu-
lar margin. Larger m gives more stringent constraint on the dis-
tribution of the deep embeddings and enforces a larger angular
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Table 1: EER comparison of different speaker embeddings, CDS
as the scoring back-end

Embeddings EER (%)
i-vector (PLDA) 4.96
Softmax Embeddings 4.65
Triplet Embeddings 4.33
A-softmax Embeddings 3.75

margin between classes. However, larger m also leads to slower
convergence. In our experiment, the performance of modified
softmax loss(m = 1) is close to the traditional softmax. With
more stringent constraint posed by a larger m, the performance
will be enhanced. The best result is obtained when m = 3, out-
performing i-vector/PLDA framework by 24.4%. No further
performance improvement is observed with a larger m.

Table 2: Impact of the hyper-parameter m

2 3
4.1 375

4
3.82

m 1
EER(%) 4.51

5.3.2. Compensation in the i-vector space

As described in Section 4, we incorporated A-softmax loss into
the DDA compensation framework in the i-vector space. In Ta-
ble 3, we illustrate the superiority of A-softmax loss based DDA
as a scoring backend. The dimension of the raw i-vector is 400,
and the transformed embedding dimension is set to 300 for both
LDA and DDA. m is set to 3 in the A-softmax loss based DDA.

Table 3: EER (%) of different compensation methods

Methods CDS PLDA
Baseline 6.8 4.96
LDA 5.67 -
DDA (Center) 4.44 -
DDA(A-softmax)  4.27 -

As shown in Table 3, our proposed DDA clearly outper-
forms traditional LDA and PLDA. This performance is further
enhanced if we substitute A-softmax loss for center loss. How-
ever, as shown in [30], both LDA and the proposed compen-
sation methods are not compatible with PLDA on this dataset,
which are not listed here.

6. Conclusions

In this paper, we investigate the application of angular soft-
max (A-softmax) in speaker verification. Inspired by the fact
that the features learned by softmax loss have intrinsic angu-
lar distribution, A-softmax loss makes more stringent require-
ments during training to enforce an angular margin between
different classes. Two A-softmax loss based SV frameworks
are investigated, 1) a CNN based end-to-end SV framework
2) an i-vector SV framework where DDA is used for channel
compensation. The proposed methods are evaluated on a short-
duration text-independent speaker verification dataset generated
from the SRE corpus. Relative improvements of 24.4% and
13.9% against the i-vector/PLDA baseline have been achieved
in the two proposed A-softmax loss based frameworks, respec-
tively.
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